Propositional Logic, Predicate Logic, and Logic Programming
Propositional Logic

DEF: A *proposition* is a statement that is either *true* or *false* (but not both).

In propositional logic, we assume a collection of atomic propositions are given: p, q, r, s, t, \ldots

Then we form compound propositions by using *logical connectives* (*logical operators*).
Logical Connectives

<table>
<thead>
<tr>
<th>Operator</th>
<th>Symbol</th>
<th>Usage</th>
<th>C++/Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negation</td>
<td>¬</td>
<td>not</td>
<td>!</td>
</tr>
<tr>
<td>Conjunction</td>
<td>∧</td>
<td>and</td>
<td>&&</td>
</tr>
<tr>
<td>Disjunction</td>
<td>∨</td>
<td>or</td>
<td></td>
</tr>
</tbody>
</table>
| Exclusive or | ⊕ | xor | (p || q) && (!p || !q)
| | | | p != q |
| Conditional | → | if-then | p?q:true |
| Biconditional | ↔ | iff | (p && q) || (!p && !q)
| | | | p == q |
Compound Propositions: Examples

\(p = “CS 603 covers logic programming.” “ \)
\(q = “CS 603 only covers fun topics.” “ \)
\(r = “Logic programming is a fun topic.” “ \)

\(\neg p = “CS 603 does not cover logic programming.” “ \)

\(p \land q = “CS 603 covers logic programming and CS 603 only covers fun topics.” “ \)

\(p \land q \rightarrow r = “If CS 603 covers logic programming and CS 603 only covers fun topics, then logic programming is a fun topic.” “ \)
Negation

Negation ("not") turns a true proposition into false, or a false proposition into true.

Logical operators are defined by **truth tables** – tables which give the output of the operator in the right-most column.

Here is the truth table for negation:

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Conjunction

Conjunction ("and") is only true when both of its components are true:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Disjunction

Disjunction ("or") is true when at least one of its components is true:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Exclusive-Or

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Beware: In English language, the word “or” sometimes means “exclusive-or”. Example: The entrée is served with soup or salad.
Conditional (Implication)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Beware: This operator might be less intuitive. Why should $p \rightarrow q$ be true when p is false? Because $p \rightarrow q$ can’t be false if condition is false.
Bi-Conditional

For $p \leftrightarrow q$ to be true, p and q must have the same truth value. Else, $p \leftrightarrow q$ is false:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Q : Which operator is the negation of \leftrightarrow?
Tautologies and contradictions

DEF: A tautology is a compound proposition that always evaluates to true.
EX: \(p \lor \neg p \)

DEF: A contradiction is a compound proposition that always evaluates to false.
EX: \(p \land \neg p \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \lor \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \land \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Tautology example

Show that \((\neg p \land (p \lor q)) \rightarrow q\) is a tautology:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\neg p)</th>
<th>(p \lor q)</th>
<th>(\neg p \land (p \lor q))</th>
<th>((\neg p \land (p \lor q)) \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Logical Equivalences

DEF: Two compound propositions p, q are \textit{logically equivalent} if their biconditional joining $p \iff q$ is a tautology. Logical equivalence is denoted by $p \equiv q$.

The easiest way to check for logical equivalence is to verify that the truth tables of both expressions yield identical columns.
Example of logical equivalence

Show that $p \rightarrow q \iff \neg p \lor q$:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$\neg p$</th>
<th>$\neg p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Contrapositives

DEF: The *contrapositive* of a logical implication is formed by reversing the implication while negating both components. So the contrapositive of \(p \rightarrow q \) is \(\neg q \rightarrow \neg p \).

Show that \(p \rightarrow q \iff \neg q \rightarrow \neg p \):

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
<th>(\neg q)</th>
<th>(\neg p)</th>
<th>(\neg q \rightarrow \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Converses and inverses

The **converse** of a logical implication is the reversal of the direction of the implication. I.e. the converse of $p \rightarrow q$ is $q \rightarrow p$.

EX: The converse of “If Donald is a duck then Donald is a bird.” is “If Donald is a bird then Donald is a duck.”

The **inverse** of a logical implication is obtained by negating both its components. I.e. the inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$.

Note: the converse $q \rightarrow p$ is logically equivalent to the inverse $\neg p \rightarrow \neg q$.

Q: Why?
Logical Non-Equivalence of Conditional and Its Converse

The conditional \(p \rightarrow q \) is not logically equivalent to its converse \(q \rightarrow p \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \rightarrow q)</th>
<th>(q \rightarrow p)</th>
<th>((p \rightarrow q) \leftrightarrow (q \rightarrow p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Note: the conditional \(p \rightarrow q \) is also not logically equivalent to its inverse \(\neg p \rightarrow \neg q \). Q: Why?
Derivational Proofs

When compound propositions involve more and more atomic components, the size of the truth table for the compound propositions increases.

Q: How many rows are required to construct the truth-table of a proposition involving \(n \) atomic components?

A: In general, \(2^n \) rows are required, so truth tables are too inefficient for large \(n \).
Derivational Proofs

EX: Consider the compound proposition

\[(p \rightarrow p) \lor (\neg (s \land r) \lor \neg t) \lor (\neg q \rightarrow r)\]

Q: Why is this a tautology?
Derivational Proofs

A: The first component is a tautology \((p \rightarrow p)\), and the disjunction of True with any other compound proposition yields True:

\[
(p \rightarrow p) \lor (\neg(s \land r) \lor \neg t) \lor (\neg q \rightarrow r)
\]

\[
\Leftrightarrow T \lor (\neg(s \land r) \lor \neg t) \lor (\neg q \rightarrow r)
\]

\[
\Leftrightarrow T
\]

Derivational proofs formalize the intuition of this example. It is often not necessary to consider every case in the truth table individually.
Table of Logical Equivalences

- **Identity laws**
 Like adding 0

- **Domination laws**
 Like multiplying by 0

- **Idempotent laws**
 Delete redundancies

- **Double negation**
 "I don’t not enjoy CS 603"

- **Commutativity**
 Like "\(x + y = y + x \)"

- **Associativity**
 Like "\((x + y) + z = y + (x + z) \)"

- **Distributivity**
 Like "\((x + y)z = xz + yz \)"

- **De Morgan**

<table>
<thead>
<tr>
<th>Equivalence</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \land T \iff p)</td>
<td>Identity laws</td>
</tr>
<tr>
<td>(p \lor F \iff p)</td>
<td>Domination laws</td>
</tr>
<tr>
<td>(p \lor T \iff T)</td>
<td></td>
</tr>
<tr>
<td>(p \land F \iff F)</td>
<td></td>
</tr>
<tr>
<td>(p \lor p \iff p)</td>
<td>Idempotent laws</td>
</tr>
<tr>
<td>(p \land p \iff p)</td>
<td></td>
</tr>
<tr>
<td>(\neg(\neg p) \iff p)</td>
<td>Double negation law</td>
</tr>
<tr>
<td>(p \lor q \iff q \lor p)</td>
<td></td>
</tr>
<tr>
<td>(p \land q \iff q \land p)</td>
<td></td>
</tr>
<tr>
<td>((p \lor q) \lor r \iff p \lor (q \lor r))</td>
<td>Associative laws</td>
</tr>
<tr>
<td>((p \land q) \land r \iff p \land (q \land r))</td>
<td></td>
</tr>
<tr>
<td>(p \lor (q \lor r) \iff (p \lor q) \lor (p \lor r))</td>
<td>Distributive laws</td>
</tr>
<tr>
<td>(p \land (q \land r) \iff (p \land q) \land (p \land r))</td>
<td></td>
</tr>
<tr>
<td>(\neg(p \land q) \iff \neg p \lor \neg q)</td>
<td>De Morgan’s laws</td>
</tr>
<tr>
<td>(\neg(p \lor q) \iff \neg p \land \neg q)</td>
<td></td>
</tr>
</tbody>
</table>
DeMorgan’s Laws

DeMorgan’s laws allow for simplification of negations of complex expressions.

- Conjunctional negation:
 \[\neg(p_1 \land p_2 \land \ldots \land p_n) \iff (\neg p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n) \]
 “It’s not the case that all are true iff one is false.”

- Disjunctional negation:
 \[\neg(p_1 \lor p_2 \lor \ldots \lor p_n) \iff (\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n) \]
 “It’s not the case that one is true iff all are false.”
More Logical Equivalences

Also recall these equivalences from earlier:

- $p \lor \neg p \iff T$ (Maximum law)
- $p \land \neg p \iff F$ (Minimum law)
- $p \rightarrow q \iff \neg p \lor q$ (Implication law)
Tautology example (revisited)

Show that \[\neg p \land (p \lor q) \rightarrow q \] is a tautology without using a truth table:
Tautology proof

\[\neg p \land (p \lor q) \rightarrow q \]

\[\Leftrightarrow [(\neg p \land p) \lor (\neg p \land q)] \rightarrow q \]

\[\Leftrightarrow [F \lor (\neg p \land q)] \rightarrow q \]

\[\Leftrightarrow [\neg p \land q] \rightarrow q \]

\[\Leftrightarrow \neg[\neg p \land q] \lor q \]

\[\Leftrightarrow [\neg(\neg p) \lor \neg q] \lor q \]

\[\Leftrightarrow [p \lor \neg q] \lor q \]

\[\Leftrightarrow p \lor [\neg q \lor q] \]

\[\Leftrightarrow p \lor [q \lor \neg q] \]

\[\Leftrightarrow p \lor T \]

\[\Leftrightarrow T \]

Distributive

Minimum

Identity

Implication

DeMorgan

Double Negation

Associative

Commutative

Maximum

Domination
Predicate Logic

Consider this compound proposition:
If Ollie is an octopus then Ollie has 8 limbs.
Let $p = \text{“Ollie is an octopus”}$ and $q = \text{“Ollie has 8 limbs”}$. The compound proposition is represented by: $p \rightarrow q$.

Next consider:
For all x, if x is an octopus then x has 8 limbs.
Let $P(x) = \text{“}x\text{ is an octopus”}$ and $Q(x) = \text{“}x\text{ has 8 limbs”}$. This can be represented by: $(\forall x) (P(x) \rightarrow Q(x))$.
Semantics

For logical propositions to have meaning, they need to describe something. Previously, propositions such as “Ollie is an octopus” and “Ollie has 8 limbs” had no intrinsic meaning. Either they are true or false, but no more.

In order to give meanings to propositions, we need to have a **universe of discourse**, i.e. a collection of **subjects** (or **nouns**) about which the propositions relate.

Q: What is the universe of discourse for the two propositions above?

A: There are many possible answers:

- Ollie (this is the smallest correct answer)
- Sea creatures
- All animals
Predicates

A **predicate** is a property or description of subjects in the universe of discourse. In the following, predicates are *italicized*:

- Ollie *is an octopus*.
- Johnny *is tall*.
- 17 *is a prime number*.
Propositional Functions

By taking a variable subject denoted by symbols such as x, y, z, and applying a predicate one obtains a *propositional function* (or *formula*). When an object from the universe is plugged in for x, y, z, etc. a truth value results:

- x is an octopus. ...e.g. plug in $x = \text{Ollie}$
- y is tall. ...e.g. plug in $y = \text{Johnny}$
- n is a prime number. ...e.g. plug in $n = 1000$
Multivariable Predicates

Multivariable predicates generalize predicates to allow descriptions of relationships between subjects. These subjects may or may not even be in the same universe of discourse. For example:

- Johnny *is at least 5 inches taller than* Debbie.

Q: What universes of discourse are involved?

A: The most obvious answer is: The first and third variable have the set of people as their universe of discourse, while the second variable has the set of numbers.

Generalization: x is at least n inches taller than y
Quantifiers

There are two quantifiers:

- **Existential Quantifier**

 “∃” reads “there exists”

- **Universal Quantifier**

 “∀” reads “for all”

Each is placed in front of a propositional function and **binds** it to obtain a proposition with semantic value.

\[(\exists x) (P(x) \Rightarrow Q(x))\]
\[(\forall x) (P(x) \Rightarrow Q(x))\]
Existential Quantifier

- "\(\exists x \ P(x) \)" is true when any instance can be found which when plugged in for \(x \) makes \(P(x) \) true.
- Like disjunctioning over entire universe

\[\exists x \ P(x) \iff P(x_1) \lor P(x_2) \lor P(x_3) \lor \ldots \]
Existential Quantifier

Consider a universe consisting of:

- Leo: a lion
- Jan: an octopus with all 8 tentacles
- Bill: an octopus with only 7 tentacles

And recall the propositional functions:

- \(P(x) = \text{“} x \text{ is an octopus”} \)
- \(Q(x) = \text{“} x \text{ has 8 limbs”} \)

\[\exists x \ (P(x) \rightarrow Q(x)) \]

Q: Is the proposition true or false?
A: True. Proposition is equivalent to

$$(P(Leo) \rightarrow Q(Leo)) \lor (P(Jan) \rightarrow Q(Jan)) \lor (P(Bill) \rightarrow Q(Bill))$$

$P(Leo)$ is false because Leo is a Lion, not an octopus, therefore the conditional $P(Leo) \rightarrow Q(Leo)$ is true, and the disjunction is true.

Leo is called a positive example.
Universal Quantifier

- “∀x P(x)” is true when every instance of x makes P(x) true when plugged in
- Like conjunctioning over entire universe
 \[∀x P(x) \iff P(x_1) \land P(x_2) \land P(x_3) \land ... \]
Universal Quantifier

Consider the same universe as before:

- Leo: a lion
- Jan: an octopus with all 8 tentacles
- Bill: an octopus with only 7 tentacles

And the same propositional functions:

- $P(x) = \text{“} x \text{ is an octopus} \text{”}$
- $Q(x) = \text{“} x \text{ has 8 limbs} \text{”}$

\[\forall x \ (P(x) \rightarrow Q(x)) \]

Q: Is the proposition true or false?
Universal Quantifier

A: False. The proposition is equivalent to

\[(P(Leo) \rightarrow Q(Leo)) \land (P(Jan) \rightarrow Q(Jan)) \land (P(Bill) \rightarrow Q(Bill))\]

Bill is a **counterexample**, i.e. a value making an instance (and therefore the whole universal quantification) false.

\(P(Bill)\) is true because Bill is an octopus, while \(Q(Bill)\) is false because Bill only has 7 tentacles, not 8. Thus the conditional \(P(Bill) \rightarrow Q(Bill)\) is false since \(T \rightarrow F\) gives \(F\), and the conjunction is false.

Note: Leo is **not** a counterexample.
Multivariate Quantification

Quantification involving only one variable is fairly straightforward. Just a bunch of OR’s or a bunch of AND’s.

When two or more variables are involved each of which is bound by a quantifier, the order of the binding is important, and the meaning may require more thought.
Parsing Multivariate Quantification

When evaluating an expression such as

$$\exists x \forall y \exists z \ P(x, y, z)$$

translate the proposition in the same order to English:

There exists an x such that for all y there exists a z such that $P(x, y, z)$.
Order matters

Set the universe of discourse to be all natural numbers \{0, 1, 2, 3, \ldots \}.

Let \(R (x, y) = “x < y” \).

Q1: What does \(\forall x \exists y R (x, y) \) mean?
Q2: What does \(\exists y \forall x R (x, y) \) mean?
Order matters

\[R(x, y) = "x < y" \]

A1: \(\forall x \exists y R(x,y) : \)

“All numbers \(x \) admit a bigger number \(y \)”

A2: \(\exists y \forall x R(x,y) : \)

“Some number \(y \) is bigger than all \(x \)”

Q: Is each statement true or false?
Order matters

A: First is true and second is false.

∀ x ∃ y R (x, y): “All numbers x admit a bigger number y” (just choose y = x + 1)

∃ y ∀ x R (x, y): “Some number y is bigger than all numbers x” (y is never bigger than itself, so setting x = y is a counterexample)

Q: What if we have two quantifiers of the same kind? Does order still matter?
Order matters – but not always

A: No! If we have two quantifiers of the same kind, the order is irrelevant.

\(\forall x \forall y \) is the same as \(\forall y \forall x \) because these are both interpreted as “for every combination of \(x \) and \(y \)…”

\(\exists x \exists y \) is the same as \(\exists y \exists x \) because these are both interpreted as “there is a pair \(x, y \)…”
Logical Equivalence with Formulas

DEF: Two logical expressions possibly involving propositional formulas and quantifiers are said to be *logically equivalent* if no matter what universe and what particular propositional formulas are plugged in, the expressions always have the same truth value.

EX: $\forall x \exists y Q(x,y)$ and $\forall y \exists x Q(y,x)$ are equivalent (names of variables don’t matter).

EX: $\forall x \exists y Q(x,y)$ and $\exists y \forall x Q(x,y)$ are not equivalent!
DeMorgan’s Laws Revisited

Recall DeMorgan’s laws:

- **Conjunctional negation:**
 \[\neg(p_1 \land p_2 \land \ldots \land p_n) \iff (\neg p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n) \]

- **Disjunctonal negation:**
 \[\neg(p_1 \lor p_2 \lor \ldots \lor p_n) \iff (\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n) \]

Since the quantifiers are the same as taking a bunch of AND’s (∀) or OR’s (∃) we have:

- **Universal negation:**
 \[\neg \forall x \ P(x) \iff \exists x \ \neg P(x) \]

- **Existential negation:**
 \[\neg \exists x \ P(x) \iff \forall x \ \neg P(x) \]
Negation Example

Simplify: \(\neg \forall x \exists y \ (x > y) \)

In English, we are trying to find the opposite of “for every \(x \) there exists a \(y \) such that \(x > y \)”. The opposite is that “for some \(x \) there is no \(y \) such that \(x > y \)”.

Algebraically, one just flips all quantifiers from \(\forall \) to \(\exists \) and vice versa, and negates the interior propositional function. In our case we get:

\[\exists x \forall y \ \neg (x > y) \iff \exists x \forall y \ (x \leq y) \]
Suppose the universe of discourse is the natural numbers \(\{0, 1, 2, 3, \ldots \} \). Also let \(S(n) = n+1 \) denote the successor function.

To prove \((\forall n) \ P(n)\) by mathematical induction, we instead prove that:

\[
P(0) \land (\forall n) \ (P(n) \rightarrow P(S(n))).
\]

This works because it can be shown that:

\[
(\forall n) \ P(n) \iff P(0) \land (\forall n) \ (P(n) \rightarrow P(S(n))).
\]

[Proof is omitted here.]

Logic programming

Logic programming is a declarative programming paradigm in which the set of attributes that a solution should possess are specified, rather than a set of steps to obtain such a solution.

It makes use of pattern-directed invocation of procedural plans from assertions and/or goals.

(Prolog is a logic programming language that starts only from goals, and uses a backtracking control structure so that only one possible computation path must be stored at a time.)
Logic programming with propositional logic

A **clause** has the form:

\[p_1 \lor p_2 \lor \ldots \lor p_n \lor \neg q_1 \lor \neg q_2 \lor \ldots \lor \neg q_m \]

This is logically equivalent to:

\[q_1 \land q_2 \land \ldots \land q_m \rightarrow p_1 \lor p_2 \lor \ldots \lor p_n \]

It can be written as a **rule** as follows:

\[p_1, p_2, \ldots, p_n \leftarrow q_1, q_2, \ldots, q_m \]

A logic program is essentially a **database** that contains a set of such rules.
The following implication is a tautology which is the principle of **resolution**:

$$(p_1 \lor \ldots \lor p_n \lor \neg q_1 \lor \ldots \lor \neg q_m \lor \neg r)$$

$$\land (r \lor s_1 \lor \ldots \lor s_j \lor \neg t_1 \lor \ldots \lor \neg t_k)$$

$$\rightarrow (p_1 \lor \ldots \lor p_n \lor \neg q_1 \lor \ldots \lor \neg q_m$$

$$\lor s_1 \lor \ldots \lor s_j \lor \neg t_1 \lor \ldots \lor \neg t_k)$$

Equivalently, here is resolution in the rule format:

If $p_1, \ldots, p_n \leftarrow q_1, \ldots, q_m, r$

and $r, s_1, \ldots, s_j \leftarrow t_1, \ldots, t_k$

then $p_1, \ldots, p_n, s_1, \ldots, s_j \leftarrow q_1, \ldots, q_m, t_1, \ldots, t_k$
Resolution example

Suppose the database contains these rules:

1. \(q, r \leftarrow p \)
2. \(s \leftarrow q \)
3. \(s \leftarrow r \)
4. \(w \leftarrow s, u \)
5. \(u \leftarrow t \)

Our goal is to prove:

\(w \leftarrow p, t \)
Resolution: deduction proof

Continue as follows:
A. Resolve 1 with 2: \(r, s \leftarrow p \)
B. Resolve A with 3: \(s \leftarrow p \)
C. Resolve B with 4: \(w \leftarrow p, u \)
D. Resolve C with 5: \(w \leftarrow p, t \)

This proves the previously stated goal.
Resolution: contradiction proof

We want to prove the goal $w \leftarrow p, t$
which is equivalent to $(w \lor \neg p \lor \neg t)$.
So assume the opposite:

$$\neg(w \lor \neg p \lor \neg t) \iff (\neg w \land p \land t).$$

That is, add these new rules to the database:

6. $\leftarrow w$

7. $p \leftarrow$

8. $t \leftarrow$
Resolution: contradiction proof

Now we want to use rules 1, 2, …, 8 to reach a contradiction. What does a contradiction look like?

The empty clause evaluates to false, because it’s the identity element of the OR operation. Equivalently, the empty rule is ←, which is our new goal.
Resolution: contradiction proof

The database now contains these rules:

1. \(q, r \leftarrow p \)
2. \(s \leftarrow q \)
3. \(s \leftarrow r \)
4. \(w \leftarrow s, u \)
5. \(u \leftarrow t \)
6. \(\leftarrow w \)
7. \(p \leftarrow \)
8. \(t \leftarrow \)

Our goal is to prove: \(\leftarrow \)
Resolution: contradiction proof

A’. Resolve 1 with 7: \(q, r \leftarrow \)

B’. Resolve 4 with 6: \(\leftarrow s, u \)

C’. Resolve 5 with 8: \(u \leftarrow \)

D’. Resolve A’ with 2: \(r, s \leftarrow \)

E’. Resolve D’ with 3: \(s \leftarrow \)

F’. Resolve E’ with B’: \(\leftarrow u \)

G’. Resolve F’ with C’: \(\leftarrow \)
Logic programming with predicate logic

All variables that appear within rules are assumed to be universally quantified (\forall).

Predicates introduce a new complication: Variables can be substituted with other expressions by a process known as unification.

Rather than give a formal definition here, we provide some examples on the next few pages.
Unification example 1

Suppose these rules are in the database:

1. \(A(x, y) \leftarrow B(y), C(x) \)
2. \(C(w), D(z) \leftarrow E(w, z) \)

To resolve 1 with 2, we must unify \(C(w) \) with \(C(x) \). Hence substitute \(w := x \), which yields:

\[
A(x, y), D(z) \leftarrow B(y), E(x, z)
\]
Unification example 2

Suppose:

1. $A(h(y), x) \leftarrow B(f(x), y)$
2. $B(w, g(z)) \leftarrow C(z, h(w))$

To resolve, we must unify $B(f(x), y)$ with $B(w, g(z))$. Substitute $w := f(x)$ and $y := g(z)$ to obtain:

$A(h(g(z)), x) \leftarrow C(z, h(f(x)))$
Unification example 3

Suppose:

1. \(A(x) \leftarrow B(f(x), x) \)
2. \(B(y, g(y)) \leftarrow C(y) \)

To resolve, we must unify \(B(f(x), x) \) with \(B(y, g(y)) \). Substitute \(y := f(x) \) and \(x := g(y) \). This circularity cannot be satisfied, so unification and resolution do not succeed here.
Unification example 4

Suppose:

1. $A(x) \leftarrow B(x, g(x))$
2. $B(h(y), x) \leftarrow C(x, y)$

The x in rule 1 has different scope from the x in rule 2. To avoid conflict, replace rule 2 by:

2'. $B(h(y), z) \leftarrow C(z, y)$

To resolve 1 with 2', we must unify $B(x, g(x))$ with $B(h(y), z))$. Substitute $x := h(y)$ and $z := g(x) := g(h(y))$. Therefore:

$$A(h(y)) \leftarrow C(g(h(y)), y)$$
Logic programming in Prolog

To keep things manageable, Prolog only allows *Horn clauses*, i.e., at most one non-negated literal appears in each clause, or at most one term on left side of rule.

Clause form: \(p \lor \neg q_1 \lor \neg q_2 \lor \ldots \lor \neg q_m \)

Rule form: \(p \leftarrow q_1 , q_2 , \ldots , q_m \)

Also, Prolog has several syntax differences from what we have seen so far.